

Festigkeitswerte von Schrauben

Das Kennzeichen der Festigkeitsklasse bei Normschrauben aus Stahl besteht aus zwei durch einen Punkt getrennte Zahlen:

- die erste Zahl, Festigkeitskennzahl genannt, entspricht dabei ½₁₀₀ der Zugfestigkeit R_m in N/mm²
- die zweite Zahl, als Streckgrenzenverhältnis bezeichnet, gibt das 10-fache des Verhältnisses der Streckgrenze Rebzw. der Ersatzstreckgrenze R_{p 0,2} zur Nennzugfestigkeit R_m an.

Wird die Zugfestigkeit R_m mit $^{1}/_{10}$ der zweiten Zahl multipliziert, erhält man als Ergebnis die Streckgrenze R_e .

Beispiel:

Auszuc

Schraube der Festigkeitsklasse 5.8, Festigkeitskennzahl = 5, Streckgrenzenverhältins = 8

Zugfestigkeit R_m = Festigkeitskennzahl x 100 = 5 N/mm² x 100 = 500 N/mm²

Streckgrenze R_e = Zugfestigkeit R_m x 0,8 = 500 N/mm² x 0,8 = 400 N/mm²

Werkstoffkennwerte	Festigkeitsklasse							
	4.6	5.6	5.8	6.8	8.8	10.9	12.9	
Zugfestigkeit R _m in N/mm ²	400	500	500	600	800	1000	1200	
Streckgrenze R _e in N/mm ²	240	300	400	480	640	900	1080	
Bruchdehnung A in %	22	20	10	8	12	9	8	

Wird bei Normelementen vereinfacht nur eine Kennzahl angegeben, z. B. "Festigkeitsklasse 5", entspricht dies der Festigkeitskennzahl und muss infolgedessen wie diese behandelt werden.

Festigkeitswerte von Muttern

Die Kennzeichnung der Festigkeitsklasse bei Normmuttern aus Stahl besteht aus nur einer Kennzahl. Diese gibt Auskunft über die auf einen gehärteten Prüfdorn bezogene Prüfspannung S_p und wird im Verhältnis $^{1}\!\!\!/_{100}$ angegeben. Die Prüfspannung Sp entspricht im Prinzip der Zugfestigkeit Rm.

Beispiel:

Mutter der Festigkeitsklasse 6

Zugfestigkeit R_m = Festigkeitskennzahl x 100 = 6 N/mm² x 100 = 600 N/mm²

Prüfspannung S _p in N/mm² für Gewinde	Festigkeitsklasse						
	5	6	8	10	12		
M 4	520	600	800	1040	1150		
über M 4 M 7	580	670	855	1040	1150		
über M 7 M 10	590	680	870	1040	1160		
über M 10 M 16	610	700	880	1050	1190		
über M 16 M 39	630	720	920	1060	1200		

Muttern und Schrauben der selben Festigkeitsklassen z. B. Mutter 8 - Schraube 8.8, können kombiniert bis zur Streckgrenze der Schraube belastet werden, ohne dass die Mutter beschädigt wird.